If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2-30x+225=0
a = 0.5; b = -30; c = +225;
Δ = b2-4ac
Δ = -302-4·0.5·225
Δ = 450
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{450}=\sqrt{225*2}=\sqrt{225}*\sqrt{2}=15\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-15\sqrt{2}}{2*0.5}=\frac{30-15\sqrt{2}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+15\sqrt{2}}{2*0.5}=\frac{30+15\sqrt{2}}{1} $
| x/7=3=4 | | x+2/3x-(x+2/3x)÷3=10 | | 24x-6=12x-12 | | b^2-12b-22=0 | | 3r-7=3r-8 | | 32/x+4=7/5 | | 220x^2-100x+33=0 | | N2+3n-84=0 | | 5x+27=27 | | 8x=9x^2-8 | | 7x^2=-14+2x | | 2x^2-3x+169=0 | | 28x-15=13x+14 | | 72(y-89)=y-81 | | n^2-22n-48=0 | | 63•n=54 | | 25x-40=15x-47 | | t^2-13t-48=0 | | 1366=16t^2 | | 3b=36b= | | d^2-22d+72=0 | | 85.375=t^2 | | (x-4)÷6=-3 | | u^2-6u-72=0 | | 25x-9x/15=16x/15 | | 18x-7=15x+9 | | 0=40-(1.1×d) | | 1.8=1.2m | | q^2+38q+72=0 | | 0.5(4x+8)-2=0.25(8x+8) | | 3t2-22t+32=0 | | 7x-6x=1 |